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GCEP Global Exergy Flux, Reservoirs, and Destruction
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Irect Normal Solar Radiation In the Southwest & Potentie
enerating Capacity
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oncentrating Photovoltaic

Sun ray

cell ,&
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mirror

tatus: Testing of Prototypes

)peration: Concentrated sunlight reflects off tracking mirrors to
hotovoltaic cells.

ey Advantage: Modular design and direct solar-to-electric conversion.
\0 working fluids

ey Challenge: Getting the power cost down via efficiency improvement,

2chnology development and manufacturing to scale.
B Pacific Gas and



oncentrating Thermal Trough

Compact Line:
Fresnel
Reflector
(CLFR)

Status: almost 20 years in the field

Operation: Parabolic Mirror concentrates sunlight to heat oil traveling
‘hrough tube. Hot oil used to generate steam and operate a turbine
connected to generator.

Key Advantage: Technology is proven and has large-scale operating
nistory. Potential to dispatch with natural gas.

Key Challenge: Core Technology is 20+ years old and has limited
mprovement potential. CLFR less expensive variation.
B Pacific Gas and




oncentrating Thermal Tower

Status: Original version 20 years ago, new versions under development
or construction

Operation: Mirrors focus sunlight on a central tower, where water is
heated to generate steam to power steam turbine generator.

Key Advantage: Higher efficiency, simpler design, lower installation
cost. Dispatchable with gas-fired boiler.

Key Challenge: No long-term operating history.
B Pacific Gas and




oncentrating Thermal Dish

WE I

Status: Working Prototypes (20yrs)

AR

Operation: Mirrored dish focuses sunlight on a dish-mounted receiver.

Heat engine at the focal point.

Key Advantage: Prototypes built and in operation for a number of years.
Modular design (each dish is a complete plant).

Key Challenge: Dish requires smaller size units. Scaling design to
manufacture in volume, maintenance due to many small engines (one
per dish), heat engine working fluid challenges.

B Pacific Gas and



>olar Thermal: Portfolio Fit; Dispatchability Optio

olar thermal can add storage or gas/biofuel cofiring to become dispatchabl
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Solar Energy Cost Trends

Levelized cost of energy in constant 2005$!
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Concentrating Solar Power

COE cents/kWh (20055)
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B Pacific Gas and Source: NREL Energy Analysis Office (www.nrel.gov/analysis/docs/cost_curves_2005.ppt)



ost/Efficiency of Photovoltaic Technology
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'V Cell Efficiency

- next Best Research-Cell Efficiencies
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olar Price Learning Curve

lar Panel Cost Drops by 19% with Each Doubling in Manufacturing Capac
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etaill Rate Parity Projected in Less Than 10 Years
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)ther PV Cost Issues

e Today’s approximate installed PV cost breakdown: $9/W
— Cell: $3/W
— Assembly: $2/W
— Inverter: $1/W
— Installation: $3/W
* Inverter longevity also needs to be addressed

» |nstallation costs may be reduced using Building Integrated
Photovoltaics

— BIPV reduces incremental labor cost by being part of the
original construction

B Pacific Gas and



].S. Wind Power Trends
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Vestern U.S. Onshore Wind Resources
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ransmission Needed for Utility-Scale Renewables

« Ultility-scale renewable resources and loads are negatively
correlated

« Connecting renewables to the grid is a growing issue
— Local network reinforcements
— New rights of way => NIMBY problems

 Transmission congestion is resource and area specific, e.g.,
California South-to-North constraints

— Adequate daytime, on-peak capacity to bring resources north
« Solar not constrained

— Inadequate night-time, off-peak capacity to bring resources
north

 “Baseload” resources (e.g., wind, geothermal, and
biomass) constrained

» Classic “chicken or egg” problem in matching transmission to
renewables should be solved by new California Renewable

Energy Transmission Initiative.
B Pacific Gas and
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esource Patterns
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Energy Storage and Grid Integration

Wind Generation

Rooftop PV
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Electric Load Duration Curve Also Shows
Value of Storage
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Balancing Function - Area Control

Real Time Load
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Real-Time Economic Dispatch
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lug Hybrid Electric Vehicles Complement Renewable:
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Global Ocean Thermal Gradient P'®!

Temperature difference between warm surface water and cold deep water
must be >20°C (36°F) for OTEC system to produce significant power
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Wave and Tidal Resource

Southern AK
1,250 TWh/yr
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Total Wave Energy Resource Easy to Calculate — Total Tidal Resource Difficult to Calculate

Total US flux into all regions with avg. wave power density >10 kW/m is ~2,100 TWh/yr

Harnessing 20% of offshore wave energy resource at 50% efficiency would be
comparable to all US conventional hydro generation in 2003.
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otential California Wave Power Generation

Summary of 2003 CEC wave study:

— “Nearshore wave power sites could
provide California with an additional
8000 MW capacity...long-term deep-

water potential can exceed the

nearshore potential by a factor of 5-

10, assuming it proves technically

and economically feasible (expected

within 10 years).”
Wave energy is highest in the winter
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ve Energy Density Varies Widely Cﬁﬁer
HC0astline at Point Concention from N
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4 Primary Types of Wave Energy Conversion

Point Absorber Terminator- Osclillating Water Column

Attenuator Overtopping

Wave direction W aves

= ll l overtopping
e v ¥ the ramp

Reservoir
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Examples of Wave Energy Devices (WECs)

Terminator (Energetech Oscillating
Water Column)

Point
Absorber
(AquaEnergy
AquaBuQY)




ritish Columbia Renewable Resources
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hree Established Means of Carbon Capture
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equestration Potential: Oil & Gas Reservoirs and
aline Formations
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